Zvec
A lightweight, lightning-fast, in-process vector database
High-Performance semantic search, made simple
Meet Zvec
The simple way to build AI applications with vectors
Blazing Fast
Millisecond search at billion-vector scale.
Learn more
Simple, Just Works
Get up and running in seconds — just install and go.
Learn more
Dense & Sparse Vectors
Support dense and sparse vectors, plus multi-vector queries.
Learn more
Filtered Vector Search
Combine semantic search with filters for precise, refined results.
Learn more
Grouped Search
Run vector similarity searches with a "GROUP BY" style clause.
Learn more
In-Process by Design
Runs directly in your app. No external services required.
Learn more
With Zvec, build high-performance applications without the complexity holding you back.
Simple, Intuitive Python API
zvec
import zvecschema = zvec.CollectionSchema( name="example", vectors=zvec.VectorSchema("embedding", zvec.DataType.VECTOR_FP32, 4),)collection = zvec.create_and_open(path="./zvec_example", schema=schema)import zveccollection = zvec.open("./zvec_example")collection.insert(zvec.Doc(id="1", vectors={"embedding": [0.1, 0.2, 0.3, 0.4]}))import zveccollection = zvec.open("./zvec_example")results = collection.query( vectors=zvec.VectorQuery("embedding", vector=[0.4, 0.3, 0.3, 0.1]), topk=10,)Blazing-Fast Performance
10MTotal Vectors Indexed
~1 HourIndex Build Time
8500+Queries per Second (QPS)
Build Powerful AI Applications
📚
RAG (Retrieval-Augmented Generation)
Enhance LLM responses with information retrieved from your knowledge base
🖼️
Image Search
Find visually or semantically similar images at scale
💻
Code Search
Find code snippets by describing what you want in natural language